Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Development of corrosion resistant coating technology of silicon carbide for enhancing accident tolerance

Ishibashi, Ryo*; Ikegawa, Tomohiko*; Tanabe, Shigetada*; Yamashita, Shinichiro; Fukahori, Tokio

no journal, , 

For the purpose of improving corrosion resistance of silicon carbide (SiC) in boiling water reactor (BWR) environments, corrosion resistant coatings to SiC substrate were evaluated. Due to its lower hydrogen generation rate and lower reaction heat in comparison with a conventional zircaloy, SiC is expected to be a proper material for accident tolerant fuel. On the other hand, there are still a lot of critical issues left for the practical application of SiC fuel cladding and fuel channel box, one of which is hydrothermal corrosion. In this study, corrosion behavior of candidate coatings to SiC substrate and joint portion were evaluated in unirradiated high purity water environments.

Oral presentation

Effects of potential on the electrical conductivity of a solution within a crevice of stainless steel in high-temperature water

Soma, Yasutaka; Komatsu, Atsushi; Kato, Chiaki

no journal, , 

This study investigates the effects of potential (electrochemical corrosion potential (ECP)) on the water chemistry within a crevice of stainless steel in 288$$^{circ}$$C water containing Cl$$^{-}$$major anionic impurities. In situ measurements of the electrical conductivity of a solution within a 15 $$mu$$m gap crevice ($$sigma$$$$_{crev}$$) were conducted using small sensors installed at different crevice depths. The ECP at the external surface of the crevice specimen (Eext) was controlled by the dissolved oxygen concentration in the bulk water. An increase in Eext from approximately -0.49 V (versus a standard hydrogen electrode at 288$$^{circ}$$C) to -0.12 V resulted in an increase in $$sigma$$$$_{crev}$$ from 12 to 160.3$$mu$$S/cm at 21 mm from the crevice mouth. FEM analysis taking into account the electrochemical reaction quantitatively reproduced this behavior. Cl$$^{-}$$ was considered to be the major anionic species transported into the crevice in this potential range. A further increase in Eext up to 0.3 V led to a decline in $$sigma$$$$_{crev}$$. An increase in the flux of oxidizing (O$$_{2}$$ and hydrochromate ion) and alkalizing species (OH$$^{-}$$) into the crevice was considered the cause of this behavior.

2 (Records 1-2 displayed on this page)
  • 1